
1

Classes

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Contents
Encapsulation
Access Specifiers
Default Access
Private Data
Public vs. Private Functions
Object State
Scope
Inline Member Functions
Constant Functions
Accessor and Mutator

3

Adding Member Functions
Evolving from structstruct to classclass: functions in a struct are the interface
structstruct Data
{

int m_x;
int m_y;
void setValues(int inputX, int inputY);
int add();

};
void main()
{

Data myData;
myData.setValues(2, 3);
cout << myData.add();

}
void Data::setValues(int inputX, int inputY)
{

m_x = inputX; m_y = inputY;
}

data members

member function declarations (prototypes)

int Data::add()
{

return m_x+m_y;
}

an object calling the member functions:
sending message to the object &sending message to the object &
object responding the messageobject responding the message

definitions of member functions

access corresponding object’s data members directly

of an object

defining a new type

4

Member Functions (cont’d)
Try calling one of the member functions without the object

add();
error C2065: 'add' : undeclared identifier

Adding correct scope won’t work either
Data::add();
error C2352: 'Data::add' : illegal call of non-static member function

Try using one of the data members without the object
cout << m_x;
error C2065: 'm_x' : undeclared identifier
cout << Data::m_x;
error C2597: illegal reference to data member 'Data::m_x' in a static function

Something you CAN do but you DON’T want to do
myData.setValues(2, 3);
myData.m_x = 4;
cout << myData.add();

in main()

Output:
7

5

Encapsulation
How does C++ enforce the encapsulation? Access Access SpecifiersSpecifiers

classclass Data
{
publicpublic:

void setValues(int inputX, int inputY);
int add();

privateprivate:
int m_x;
int m_y;

};
What does private mean?

Private data can only be accessed in member functions
It does not mean they can only be accessed through objects

Why does this help?
myData.m_x = 4;
error C2248: 'm_x' : cannot access private member declared in class 'Data'

whatever in the public
segment is the interface
of a class

could use keyword structstruct instead

6

Access Specifiers
Members of a class are privateprivate by default, members of a struct are
publicpublic by default

classclass Data
{

int m_x;
int m_y;

publicpublic:
void setValues(int inputX, int inputY);
int add();

};
You can mix public and private as you wish, but why should you?

class Data
{
private:

int m_x;
public:

void setValues(int inputX, int inputY);

structstruct Data
{

int m_x;
int m_y;

publicpublic:
void setValues(int inputX, int inputY);
int add();

};

private public

private:
int m_y;

public:
int add();

};

Style: put public segment before private segment

7

Data: Private? or Public?

If data members are private, how does a client program access them?
myData.setValue(3, 5); myData.add(); through the interface

Why should a client NOT change the data parts directly?
Reason 1: Deny meddling access

myData.m_y = -20; // would pass the robustness check
…
void Data::setValues(int inputX, int inputY) {

if ((inputX == 0) || (inputY < 0)) // robustness check
cout << "Warning: illegal data values!!";

else
m_x = inputX, m_y = inputY;

}
Reason 2: Change can break the client code

class Data { …
char m_x; // original client code myData.m_x = 666; would be wrong

};

Data members should always be private.Data members should always be private.
Member functions should be private unless they must be public.Member functions should be private unless they must be public.

8

Functions: Private? or Public?
Why make a function public?

void main() {
Data myData;
myData.setValues(2, 3);
cout << myData.add();

}
Why make a function private?

Helper function, not a service of this class of object
If the programmer wants to preserve the extensibility of this piece of code
If the programmer cannot find any reason to make it public. (Something like
“defensive driving”… maybe call it “defensive coding”)

class Calendar
{
…
private:

bool isBufferEmpty(); // not a service
…
};

client codes demand an interface to
manipulate this sort of objects, i.e.
services to client codes

9

Object State
The data members of a class comprise the state of an object

Each object has its own stateown state
CDate date1, date2;
date1.set(2004, 7, 31);
date2.set(1970, 1, 1);

Each object shares the same codeshares the same code for member functions
Why calling these variables (data members) statestate?

myData: CDate

+ void set(int year, int month, int day)
+ void display()
- m_day
- m_month
- m_year
- m_holidays

Client codes
interactions

object
data members

member functions
maintain internal state

struct (variables that hold data)

functions (algorithms that process data)

basically independent

10

Scope
Two classes can have member functions or data members of the
same name; member functions and data members are of class scope

mathObject.setValues(3, 4);
graphicsObject.setValues(4, 67);

Toplevel functions, variables and objects are of global scope
setValues(5, 6); // or ::setValues(5, 6); will not be ambiguous

Disambiguation:
void Point::setValues(int x, int y)
{

Point::x = x; // Point::x and this->y both refer to the data member of
this->y = y; // the class Point

}

Where should classes and member functions be put into?
classes: typically in the .h file
member functions: always in the .cpp file

mathObject.m_x = 10;
graphicObject.m_x = 20;

class Point {
… int x, y; …
};

11

Scope (cont’d)
Global scope (per execution file)

file scope (per cpp file)

block

function

nested
block

block

Base class (public and protected)
private is limited to Base itself

block

member function

nested block

Derived class (public, private,
and protected)

block

member function

nested block

12

Inline Member Functions
Member function can be inline

inlineinline void Data::setValues(int inputX, int inputY)
{

x = inputX;
y = inputY;

}
Inline expansion is determined by the compiler, the compiler can
only expand an inline function when its definition is available.

The above definition of Data::setValues() must come before any invocation
Another way is defining setValues() as inline in class declaration

class Data
{

…
inlineinline void setValues(int inputX, int inputY);
…

}; This way of definition is not recommended.
Reason: Don’t commit the class to the inline function.

13

Inline Member Functions (cont’d)
A function can also be defined within the class. Such a function is
automatically inline.

class Data
{
public:

void setValues(int inputX, int inputY)
{

m_x = inputX;
m_y = inputY;

}
int add();

private:
int m_x;
int m_y;

};
What really happens? Inline functions are not shared by all objects
of the class. Every call to the function inserts the code of the
function (limited by the capability of the compiler).

inline

Guideline: Do not define functions within the class, even
though you can. This commits you to an inline function
and clutters up the class definition. (JAVA’s only way)

Usually, this is the only way where
objects of other types can enjoy the
benefits of inline expansion.

14

Constant Functions
A member function declared as const cannot change any data members of the
class, which also means that it cannot call any other non-constant function.
class Data
{
public:

void setValues(int inputX, int inputY);
int add(); // no collision with the next one
int add() constconst;

private:
int m_x;
int m_y;

};
int Data::add() constconst
{

return m_x + m_y;
}

part of the function signature

void main()
{

Data obj;
const Data *ptr=&obj;
obj.add(); // call int add();
ptr−>add(); // call int add() const;

}

error C2662: cannot convert 'this' pointer from
'const struct Data' to 'struct Data &'.
Conversion loses qualifiers.

If there is no int Data::add();
This line will call add() const;

15

Accessor and Mutator
Accessor functions: a function that returns a data member.

All accessor functions should be const.
Mutator function: a function that alters object’s state.
Simple accessor and mutator functions are often inline

inline void Data::setX(int inputX) {
m_x = inputX;

}
…
void main() {

…
object.setX(10); // is equivalent to m_x = 10;
…

}

Simple accessor and mutator functions often mean that the design
is not encapsulated well. Object boundary is not placed well.
An object providing services is often abstracted better and
encapsulated better. 16

Accessor and Mutator (cont’d)
Should you provide an accessor function for every data member?

No, some data is internal to the class.
Never give the client more than is absolutely necessary.

Should you provide a mutator function for every data member?
No, not necessarily.

Ex.
calendarObject.setDay(14);
calendarObject.setMonth(2);
calendarObject.setYear(2004);

better, concise and convenient interfacebetter, concise and convenient interface
day = calendarObject.getDay();
month = calendarObject.getMonth();
year = calendarObject.getYear();
cout << year << '/' << month << '/' << year;

calendarObject.setDate(14, 2, 2004);

calendarObject.printDate();

ItIt’’s a better abstraction for an object to s a better abstraction for an object to provide a serviceprovide a service than just be a storage.than just be a storage.

You cannot check mutual consistency
with separate mutator functions.

