
1

More Classes

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Contents

 Object composition and constructors
 Initialization of object within object
 Returning pointers
 this pointer
 Exploiting implicit references
 Class conversion
 Static data members
 Static member functions

3

Object Component
 Sometimes you would like to use a well designed object as a

component to help accomplishing the task
 In that case, we have an object within another object
 Example:

class Person {
public:

Person(const char *name);
~Person();
char *getName() const;

private:
char *m_name;

};

class SaleDept {
public:

SaleDept(const char *manager,
const char *clerk);

void listMembers() const;
private:

Person m_manager;
Person m_clerk;

};

void main() {
SaleDept *saleDept;
saleDept =

new SaleDept("Jamie", "Paul");
myRoom->listMembers();
delete saleDept;

}
SaleDept::SaleDept(

const char *managerName,
const char *clerkName) {

}
NOT working!!
error C2512: 'Person' :

no appropriate default
constructor available

4

Solving The Initialization Problem
 First try: illegal syntax, calling Person ctor within SaleDept ctor, i.e.

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager(managerName);
m_clerk(clerkName);

}
 Second try: not a good one, require default ctor, extra CPU time,

depending on some uncertain factors
SaleDept::SaleDept(const char *managerName, const char *clerkName) {

m_manager = Person(managerName);
m_clerk = Person(clerkName);

}
 Third try: a safe and syntactically legal solution, but undesirable

class Person {….
Person(); // empty ctor
void setName(const char *name);

};
 Correct solution: using initialization list

SaleDept::SaleDept(const char *managerName, const char *clerkName)
: m_manager(managerName), m_clerk(clerkName) {

}

5

Returning Pointers
 The function getName() violates data encapsulation

class Person {
public:

Person(const char *name);
~Person();
char *getName() const;

private:
char *m_name;

};

 Why? Consider the following code: looks OK
void SaleDept::listMembers() const {

cout << m_manager.getName() << " is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n";

}

 What would happen if it were written like this
void SaleDept::listMembers() const {

char *tempString = m_manager.getName();
tempString[0] = '#';
cout << tempString << " is the manager of the sale department and "

<< m_clerk.getName() << " is the clerk.\n";
}

Interfering the integrity of
the private data of Person class

6

Solution to Data Encapsulation Problem
 Simple solution provided by the grammar to prevent incidental

breaking of the encapsulation
class Person {
public:

Person(const char *name);
~Person();
const char *getName() const;

private:
char *m_name;

};

const char *Person::getName() const {
return m_name;

}

void SaleDept::listMembers() const {
const char *tempString = m_manager.getName();
// tempString[0] = '#'; // compiler rejects this statement
cout << tempString << " is the manager of the sale department and "

<< m_clerk.getName() << " is the clerk.\n";
}

 Other solutions? use a string object

Won't be able to mutate
the content of m_name
within this member function

unintentional

7

this pointer
 In the first C++ translator, by Stroustrup, C++ functions is

translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function? Ex.
class Grades {
public:

Grades(int score);
int getScore();

private:
int m_score;

};
int Grades::getScore() {

return m_score;
}

 The compiler generates an implicit reference to the object which
called the function and passes it into the function as an argument.

 Explicitly referencing the object
int Grades::getScore() {

return thism_score;
}

which variable is this referring to

void main() {
Grades student1(95), student2(85), student3(45);
cout << student1.getScore();
cout << student2.getScore();
cout << student3.getScore();

}

8

The primary purpose of this pointer
 The this pointer is most commonly used when objects need to be

linked to other objects
class LinkedList {
public:

void insert(LinkedList *newNode);
private:

LinkedList *previous;
LinkedList *next;

};

 We want to insert a new node
into the list after another object
with currentObjectinsert(newObject);

 The actual way to achieve the goal is using this pointer
void LinkedList::insert(LinkedList *newNode) {

newNodenext = next; // implicitly referring the member of current object
newNodeprevious = this; // or next->previous
nextprevious = newNode;
next = newNode;

}

previous
next

previous
next

previous
next

currentNode newNode nextNode

previous
next

previous
next

currentNode nextNode

9

Exploiting Implicit References
 Suppose we want to add a function to class Grades that checks if

two objects contain the same score
 Here is the call in main()

if (grade1.equal(grade2))
cout << "same scores";

else
cout << "different scores";

 Here is the function
bool Grades::equal(Grades &secondScore) {

return m_score == secondScore.m_score;
}

 Do not ignore implicit dereferencing
bool Grades::equal(Grades &firstScore, Grades &secondScore) {

return firstScore.m_score == secondScore.m_score;
}

Note how clumsy the call is to this function
if (grade1.equal(grade1, grade2))

….

10

Type Conversion Constructor
 Suppose we would like to convert raw minutes to Time object

class Time {
public:

Time();
Time(int hours, int minutes, int seconds);
Time(int rawMinutes);

private:
int m_hours;
int m_minutes;
int m_seconds;
void normalize();

};
Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {
}
Time::Time(int hours, int minutes, int seconds)

: m_hours(hours), m_minutes(minutes), m_seconds(seconds) {
normalize();

}
Time::Time(int rawMinutes): m_seconds(0), m_minutes(rawMinutes), m_hours(0) {

normalize();
}

void Time::normalize() {
m_minutes += m_seconds / 60;
m_seconds = m_seconds % 60;
m_hours += m_minutes / 60;
m_minutes = m_minutes % 60;
m_hours = m_hours % 24;

}

11

Type Conversion Constructor
 Usage:

void main() {
int x = 125;
Time object;
object = Time(125); // temporary object, assignment operator
object = 125;
object = x;
object = (Time) x;

} implicit invocation of type conversion ctor,
construct a temporary object,
assignment operator

12

Class Conversion
class Celsius; // forward declaration
class Fahrenheit {
public:

Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);
int getTemperature() const;
void display() const;

private:
int m_temperature;

};

class Celsius {
public:

Celsius(int temperature);
Celsius(Fahrenheit &fTemperature);
int getTemperature() const;
void display() const;

private:
int m_temperature;

};

Fahrenheit::Fahrenheit(Celsius &cTemperature) {
int celsiusTemperature = cTemperature.getTemperature();
m_temperature = (int)(9.0 * celsiusTemperature / 5 + 32.5);

}
Usage:

Fahrenheit room(75);
Celsius zimmer(18);
Celsius c_room(room);
Fahrenheit f_zimmer(zimmer);
room = zimmer;

13

Static Data Members
 Suppose we want to give each object of the Student class a unique ID
 Using a global variable is one method

int gIDNumber = 0;
class Student {
public:

Student();
int getID() const;

private:
int m_id;

};

 The constructor
Student::Student():m_id(gIDNumber++) {
}

 Problems:
 If other programs manipulate this global variable, the count would be incorrect
 It would be better if a name like gStudentIDNumber is used

14

Static Data Members (cont’d)
 Better solution with static data member

class Student {
public:

Student();
int getID() const;

private:
static int lastIDNumber;
int m_id;

};

 A class declaration is not a variable, you must define the static
variable in the global scope

int Student::lastIDNumber = 0;

this can be put anywhere in the program, but it must be in the *.cpp
file and only occurs once

 The constructor
Student::Student():m_id(lastIDNumber++) {
}

 Also used for specific constant definition. Ex. Integer::INT_MAX

15

Static Member Functions
 A static function can only access static data member

class Student {
public:

Student();
int getID() const;

private:
static int lastIDNumber;
int m_id;
static int getNewID();
static int incrementNewID();

};

 The keyword static is not repeated in the function definition
int Student::getNewID() {

return lastIDNumber;
}

 The constructor might take this form
Student::Student():m_id(getNewID()) {

incrementNewID()
}

int Student::incrementNewID() {
return lastIDNumber++;

}

16

Static Member Functions (cont'd)
 If the static member function is public, it can be accessed without

reference to a particular object, ex.
Integer::convertFromInt(10);

 Static member function does not have the implicit this pointer
because it is not invoked with any object.

 Sometimes use static member functions to implement callback
functions that do not allow any implicit argument.

