
1

Two Dimensional Arrays in C/C++

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Version 1. Fixed dimensions 5 by 3
 Both dimensions are fixed
 Allocated either in data segment or in stack
 Example

int i, j;
int x[5][3];

for (i=0; i<5; i++)
for (j=0; j<3; j++)

x[i][j] = 0;

Physical layout

Conceptual layout
x

3

Version 2a. Dynamic allocated 5 by n
 Size of the first dimension is fixed as 5, size of the second

dimension is left variable
 Allocated on the stack (x[]) and the heap (x[i][])
 Example

int i, j, n=3;
int *x[5];

for (i=0; i<5; i++)
x[i] = new int[n];

for (i=0; i<5; i++)
for (j=0; j<n; j++)

x[i][j] = 0;

for (i=0; i<5; i++)
delete[] x[i];

Conceptual layout

x

4

Version 2b. Dynamic allocated m by n
 Size of both dimensions are variable
 Both allocated on the heap
 Example

int i, j, m=5, n=3;
int **x;

x = new int*[m];
for (i=0; i<m; i++)

x[i] = new int[n];

for (i=0; i<m; i++)
for (j=0; j<n; j++)

x[i][j] = 0;

for (i=0; i<m; i++)
delete[] x[i];

delete[] x;

Conceptual layout
x

5

Version 3. Dynamic allocated m by 3
 Size of the first dimension is variable, size

of the second dimension is fixed as 3
 Allocated on the heap
 Example

int i, j, m=5;
int (*x)[3];

x = new int[m][3];

for (i=0; i<m; i++)
for (j=0; j<3; j++)

x[i][j] = 0;

delete[] x;

Conceptual layout
x

Physical layout

6

Version 4. Dynamic allocated m by n
 Sizes of both dimensions are variable
 Allocated on the heap
 Example

int i, j, m=5, n=3;
int **x, *tmp;

x = new int*[m];
tmp = new int[m*n];
for (i=0; i<m; i++)

x[i] = &tmp[i*n];

for (i=0; i<m; i++)
for (j=0; j<n; j++)

x[i][j] = 0;

delete[] x[0];
delete[] x;

Conceptual layout

x
tmp

7

Version 5. Dynamic allocated m by n
 Sizes of both dimensions are variable, emulate with 1-D array

syntax
 Allocated on the heap
 Example

int i, j, m=5, n=3;
int *x;

x = new int[m*n];

for (i=0; i<m; i++)
for (j=0; j<n; j++)

x[i*n+j] = 0; // x[i][j] does not work
// (&x[i*n])[j] is OK

delete[] x;

Physical layout

x

